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Abstract– Markov models are one of the most widely used 
machine learning methods for natural language processing. 
Markov chain and hidden Markov model is a stochastic 
(random) method used to model dynamic systems, and the 
current state of the system is predicted based on previous states. 
The Markov chain, which correctly generates a sequence of 
words in the generation of sentences, is widely used in NLP 
tasks. It is also used for identifying NERs in a sentence and POS 
tagging based on a hidden Markov model. Based on the Markov 
model, hidden tags are predicted based on the tagged words in 
the language corpus. This article presents methods and 
algorithms for automatic POS tagging of a given sentence based 
on the tagged Uzbek corpus using a hidden Markov model. 

Keywords: Parts of Speech Tagging, POS tagging, hidden 
Markov model, Markov chain, Hidden Markov Models, stochastic 
methods, NLP, word groups, homonymy resolution, transition 
probability, emission probability, Viterbi algorithm. 

I. INTRODUCTION

The purpose of the science of linguistics is to describe and 
explain linguistic features that exist in oral and written speech 
in our environment. First of all, explaining the cognitive 
aspects of language acquisition, understanding and use of 
human beings, another task is related to our understanding of 
how language connects with the world. One of the important 
tasks of linguistics is to study how communication is carried 
out through the linguistic structure of the language. There is 
a set of rules that govern linguistic expressions to explore this 
task. Later, statistical linguistic models were created and 
effectively used in various fields of NLP. Although being 
useful in practice is not the same as developing a valid theory, 
the effectiveness of statistical linguistic models has 
demonstrated the validity of the original approach [1]. 

This article presents various solutions for applying 
Markov models to NLP tasks. A Markov model is a method 
that studies the probability of something happening in the 
future by analyzing known probabilities. Natural languages 
are probabilistic languages that depend on the order 
(sequence) of words and phrases to get meaning in the 
context, and it is possible to use stochastic models such as the 
Markov model. 

Associating each word in a sentence with its 
corresponding POS (part of speechs) is called POS tagging or 
POS annotation in NLP. Phrases, morphological features or 
lexical tags can be processed as POS tags. In many cases, 
nouns, verbs, adjectives, and similar word groups are used as 

speech tags. For small language corpora, POS tagging can be 
done manually. However, since the POS tagging process in 
large language corpora is complex and requires many steps, 
today this process is performed by automatic means. [10]. 
POS tags provide important information about a word and its 
neighbors. The POS tagging process can be used in a variety 
of tasks such as NLP applications such as data acquisition, 
parsing, text-to-speech (TTS) and data retrieval, and 
linguistic research for corpora. [11]. Also, POS tagging is 
used as an intermediate (initial) step for syntactic parsing, 
semantic parsing, translation, and many other high-level NLP 
tasks. This makes POS tagging an important step for 
advanced NLP applications. This article presents the methods 
of implementing POS tagging in Uzbek texts using the 
Hidden Macro model. The article focuses on Markov models 
as a stochastic approach to text processing in NLP. Most NLP 
research uses supervised models with improved use of 
Markov models to reduce dependency on annotation tasks. 

Powerful models such as HMM require very large amount 
of training data and provide less accuracy for unknown 
(untrained) word recognition. Most of the world's languages 
do not have enough resources (language corpus) to 
implement the computation to use for training such models. 
[12], [11]. In the process of developing NLP applications for 
such languages, many unknown words are encountered. This 
leads to low accuracy of the model. Nowadays, increasing 
accuracy is a pressing problem for low-resource languages. 
As of Dec. 2022, the tagged educational corpus of the Uzbek 
language developed by the team of authors contains more 
than 5,000,000,000 sentences and about 1,200,000 word 
forms, and the examples in the article are based on the 
sentences in this corpus [5]. 

II. MATERIAL AND METHODS
Hidden Markov model. A Markov chain is a model of a 

random process that represents the probabilities of sequences 
of random variables, commonly known as states. Each state 
can take values from a specific set. That is, it can be 
understood as the probability of the current state depending 
on the previous state. A Markov chain is used when it is 
necessary to calculate the probability of a sequence of 
observable events. However, in most cases, the chain is 
hidden or invisible, and each state randomly generates 1 out 
of every k observation that are visible to us. [10]. A situation 
means certain conditions at a certain time. Let us be given a 
sequence of variables for states 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛. According to the 
assumption of the Markov model:  
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(𝑠𝑠𝑖𝑖 = 𝑎𝑎|𝑠𝑠1 … 𝑠𝑠𝑖𝑖−1) = (𝑠𝑠𝑖𝑖 = 𝑎𝑎|𝑠𝑠𝑖𝑖−1) (1) 

A formal description of the Markov chain is given in 
Table I below: 

TABLE I. MATHEMATICAL DESCRIPTION OF MARKOV CHAINS 
𝑆𝑆 = 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛 A group of N states 

𝐴𝐴
= 𝑎𝑎11,𝑎𝑎12, … , 𝑎𝑎𝑛𝑛1, … , 𝑎𝑎𝑛𝑛𝑛𝑛 

𝐴𝐴 - probability transition matrix, it is each one 𝑎𝑎𝑎𝑎𝑎𝑎 
– represents the probability of transition from
state 𝑎𝑎 to another state j. 

�𝑎𝑎𝑖𝑖𝑖𝑖 = 1,     ∀𝑎𝑎
𝑛𝑛

𝑖𝑖=1

 

𝑃𝑃 = 𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑛𝑛 The initial probability distribution for S cases. 
𝑃𝑃𝑖𝑖  represents the probability that the Markov 
chain starts at a given state 𝑎𝑎. 

�𝑝𝑝𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

 

When analyzing a text, the user usually does not 
distinguish the tags related to the word group, but infers about 
the tags from the sequence of words. We call such tags 
"hidden" because we do not track them directly. A formal 
description of the hidden Markov model is given in Table II 
below [15]: 

TABLE II. MATHEMATICAL DESCRIPTION OF HMM 
𝑆𝑆 = 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛 A group of N states 

𝐴𝐴
= 𝑎𝑎11,𝑎𝑎12, … , 𝑎𝑎𝑛𝑛1, … , 𝑎𝑎𝑛𝑛𝑛𝑛 

𝐴𝐴 is a transition matrix of probability, 
representing the probability of transition from 
each state 𝑎𝑎𝑖𝑖𝑖𝑖 – 𝑎𝑎 to another state j. 

�𝑎𝑎𝑖𝑖𝑖𝑖 = 1,     ∀𝑎𝑎
𝑛𝑛

𝑖𝑖=1

 

𝑂𝑂 = 𝑂𝑂1,𝑂𝑂2, … ,𝑂𝑂𝑛𝑛 𝑇𝑇 is a sequence of observations (O), all of which 
are taken from a special dictionary (source). 

𝑉𝑉 = 𝑉𝑉1,𝑉𝑉2, … ,𝑉𝑉𝑡𝑡 
𝐵𝐵 = 𝑏𝑏𝑖𝑖(𝑂𝑂𝑖𝑖) A sequence of observation probabilities (called 

emission probabilities), all of which represent the 
probability that observation 𝑂𝑂𝑖𝑖  will occur from 
state 𝑎𝑎 

𝑃𝑃 = 𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑛𝑛 The initial probability distribution for S cases. 
𝑃𝑃𝑖𝑖  represents the probability that the Markov 
chain starts at a certain state 𝑎𝑎. 

�𝑝𝑝𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

 

III. REVIEWS
There are different approaches and methods to implement

POS tagging [5], as shown in Fig. 1: rule-based, stochastic or 
statistical, hybrid [14]: 

Rules-based POS tagging. A rule-based approach uses a 
dictionary or lexicon to match a word with a tag. This requires 
a large number of manual operations, such as dataset 
annotations or lexicon creation. For example, an adjective 
word is often followed by a noun word. In some cases, regular 
expression templates are used to define the keyword. 
Knowledge-based taggers, powered by expert-compiled 
vocabularies, provide highly accurate results. But there are a 
number of limitations to implementing rules-based POS 
tagging [15]. 

Parts of Speech Tagging

Stochastic approachesRule-based approaches Hybrid approaches

N-gramms

HMM

Fig. 1. Approaches of POS tagging 

POS tagging using stochastic methods. With this 
method, the tagging process is performed automatically and 
does not require data encoding and dictionary creation. It uses 
statistics, frequency and probability to tag a word. In the 

process of tagging, the probability of a word being associated 
with a certain tag or the frequency of consecutive words is 
determined. In this approach, probabilities are calculated 
based on labeled data in the training corpus. Stochastically, 
POS tagging is performed using n-grams or hidden Markov 
models [11]. There are three common types of n-grams: 
unigram, bigram, and trigram The lists the n-grams 
corresponding to the sentence "I read a fiction book" is given 
in Table III: 

TABLE III. N-GRAMS CORRESPONDING TO THE SENTENCE 
N-gramm words/word phrases 
Unigram Men  

badiiy 
kitobni 
o‘qidim 

Bigram Men badiiy 
badiiy kitobni 

kitobni o‘qidim 
Trigram Men badiiy kitobni 

badiiy kitobni o‘qidim 
This approach uses a statistical model to calculate the 

probability for n-grams and assigns a tag corresponding to the 
specified n-grams. The probability of a unigram word is 
determined by the following equation: 

𝑃𝑃(𝑔𝑔𝑖𝑖  | 𝑑𝑑𝑖𝑖  )  =  
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑑𝑑𝑖𝑖|𝑔𝑔𝑖𝑖)
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑑𝑑𝑖𝑖  )

The probability of a word bigram is determined as: 

𝑃𝑃(𝑔𝑔𝑖𝑖  | 𝑑𝑑𝑖𝑖  )  = 𝑃𝑃(𝑑𝑑𝑖𝑖  | 𝑔𝑔𝑖𝑖  ) ∗  𝑃𝑃(𝑔𝑔𝑖𝑖  | 𝑔𝑔𝑖𝑖−1 ) 
The probability of a word trigram is determined as: 

𝑃𝑃(𝑔𝑔𝑖𝑖  | 𝑑𝑑𝑖𝑖  )  = 𝑃𝑃(𝑑𝑑𝑖𝑖  | 𝑔𝑔𝑖𝑖  ) ∗  𝑃𝑃(𝑔𝑔𝑖𝑖  |𝑔𝑔𝑖𝑖−2,𝑔𝑔𝑖𝑖−1 ) 
Here g is a label and w are a sequence of words. P(di | gi 

) represents the probability of the current word given the 
current tag, and P(gi | gi-1 ) represents the probability of the 
current tag given the previous tag [24]. In POS tagging, 
HMM associates each word in the text with a corresponding 
tag. POS tags are considered latent states and the HMM 
model tries to predict the tag based on the observed (tagged) 
words in the corpus. It is necessary to define gin in such a 
way that the following equality should hold: 

�(𝑑𝑑𝑖𝑖  | 𝑔𝑔𝑖𝑖  ) ∗  𝑃𝑃(𝑔𝑔𝑖𝑖  | 𝑔𝑔𝑖𝑖−1 )
𝑛𝑛

𝑖𝑖=1

 

POS tagging based on hybrid methods. In the first step, 
the model is trained using statistical methods. Then, a rule-
based approach is also implemented in order to improve the 
efficiency of the result [26.]. There are different methods that 
can be used for POS tagging of Uzbek language texts: 

Rules-based POS tagging. Rule-based POS tagging 
models assign POS tags to words in text using a set of 
handwritten rules. These grammatical rules are often called 
context frame rules. We will give an example of such rules: 
"Agar noaniq/noma'lum so‘z "-di" qo‘shimchasi bilan tugasa 
uni fe’l deb belgilang". 

Transformation based tagging. Transform-based 
approaches use a predefined set of manually defined rules as 
well as automatically applied rules developed during training. 

Deep learning models. Different deep learning models 
are used for POS tags. For example, the Meta-BiLSTM 
model provides about 97 percent accuracy [27, 28]. 

Stochastic tagging. A stochastic approach involves 
frequency, probability, or statistics. The simplest stochastic 
approach is to identify the most frequently used tag for a 
given word in the training data and use this information to tag 
that word in plain text.  
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IV.RESULTS

POS Tagging via Hidden Markov Model.. HMMs can be 
applied to NLP applications such as speech, writing, gesture 
recognition, and bioinformatics. Let's consider an example 
proposed by Luis Serrano and choosing a suitable sequence 
of tags for text using a HMM as shown in Fig. 2: 

Fig. 2. The HMM method proposed by Luis Serrano 

In this example, we are only looking at 3 POS tags, which 
are nouns, modals, and verbs. The sentence "Nature is as 
beautiful as a bride" is tagged as a noun, predicate, noun, and 
adjective, and it is necessary to calculate the transition 
probability and emission probability of this sequence. 
Transition probability is the probability of a given sequence, 
such as the probability that a noun is followed by a 
preposition, and a noun is followed by a preposition, and an 
adjective is followed by a noun. This type of probability is 
called transition probability. This probability value must be 
high for a particular sequence to be true. Now let's calculate 
the probability that the word "tabiat" is a noun, the word 
"xuddi" is a particle, the word "kelinchak" is a noun, and the 
word "serbezak" is an adjective. This set of probabilities is 
called emission probability. 

We calculate the above two probabilities for the following 
set of sentences: Nodir Zuhrani yaxshi ko‘radi. Komil 
uzoqdan Nodirni ko‘rdi. Zuhra Nodirni so‘rab ko‘rdimi? 
Zuhra Komilga nodir kitobni berdi. Note that Nadir, Zuhra 
and Kamil are human names. We can see this in Fig. 3: 

Fig. 3. Sentences tagged with POS 

In the above sentences, the word "Nodir" appears three 
times as a noun and once as an adjective. To calculate the 
probability of emission, we form a calculation table in a 
similar way (as shown in Table IV): 

TABLE. IV. TAG FREQUENCIES CORRESPONDING TO THE GIVEN 
SENTENCES 

Words Noun Adjective Adverb Verb 
Nodir 3 1 0 0 
Zuhra 3 0 0 0 

Komil 2 0 0 0 
yaxshi 0 1 0 0 

ko‘radi/ 
ko‘rdimi 

0 0 0 3 

uzoqdan 0 0 1 0 
so‘rab 0 0 0 1 
kitobni 1 0 0 0 
berdi 0 0 0 1 

In the next step, we divide each column by their total 
number of occurrences. For example, "noun" occurs 9 times 
in the above sentences. After this operation, we create the 
following table (TABLE. V.): 

TABLE. V. EMISSION PROBABILITY VALUES 
Words Noun 

(N) 
Adjective

(JJ) 
Adverb(

RR) 
Verb (V) 

Nodir 3/9 1/2 0 0 
Zuhra 3/9 0 0 0 
Komil 2/9 0 0 0 
Yaxshi 0 1/2 0 0 

ko‘radi/ko‘rdimi 0 0 0 3/5 
Uzoqdan 0 0 1 0 
so‘radimi 0 0 0 1/5 
Kitobni 1/9 0 0 0 
Berdi 0 0 0 1/5 

Based on the above tables, we come to the following 
conclusions: 

− The probability that the word "Zuhra" is a noun = 3/9
− The probability of the word "Zuhra" being ravish = 0
− The probability that the word "Nodir" is a noun = 3/9
− The probability that the word "Nodir" is an adjective = 1/2

All remaining probabilities can also be determined by the
above method. This is the emission probability. In the next 
step, it is necessary to calculate the transition probability. 
Therefore, we define two additional <S> and <E> tags. As 
shown in Fig. 4, <S> is placed at the beginning of each 
sentence and <E> at the end: 

Fig. 4. Pos-tagged sentences (tags matching the beginning and end of the 
sentence) 

In the next step, we will form a table representing the 
number of decimals of tags: 

TABLE VI. STATISTICS OF CONSECUTIVE OCCURRENCE OF 
WORD GROUPS 

N JJ RR V <E> 
<S> 4 0 0 0 0 
N 3 2 1 2 0 
JJ 1 0 0 1 0 
RR 1 0 0 0 0 
V 0 0 0 1 4 

In the image above, we can see that the <S> tag is 
followed by the N tag four times. Adjective tag (JJ) occurs 
only 1 time after Noun tag (N). Therefore, the second entry is 
equal to 1. In a similar way, the remaining parts of the table 
are filled.  
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In the next step, we divide each term in the table row by 
the total number of the tag under consideration. For example, 
the quality tag (JJ) is followed by another tag 2 times. 
Therefore, we divide each element as shown in Fig. 5:  

Fig. 5. Sentences tagged with pos 

TABLE VII. EMISSION PROBABILITY VALUES  
N JJ RR V <E> 

<S> 4/4 0 0 0 0 
N 3/8 2/8 1/8 2/8 0 
JJ ½ 0 0 1/2 0 
RR ½ 0 0 0 0 
V 0 0 0 1/5 4/5 

The values in Table-VII are the transition probability 
values for the given four sentences. How does a HMM 
determine the appropriate sequence of tags for a given 
sentence from the above tables? Let's take a new sentence and 
label it with incorrect tags: We tag the sentence "Zuhra 
Nodirni so‘rab ko‘rdi" as follows (wrongly): Zuhra – noun; 
Nodirni - adjective; so‘rab – noun; ko‘rdi – verb. In the next 
step, we calculate the probability of this sequence being 
correct as shown in Fig. 6: 

Fig. 6. Probability of consecutive occurrence of word groups 

The probability of an Adjective (JJ) tag is 1/4 after a Noun 
(N) tag, as shown in the table. Also, the probability of the 
word Venus being Horse is 3/9. In the same way, we calculate 
each probability in the graph. Now the product of these 
probabilities determines the probability that the sequence is 
correct. The multiplier is zero because the tags are incorrect 
(not formatted): 

4
4 ∙

3
9 ∙

1
4 ∙

1
2 ∙

1
1 ∙ 0 ∙

1
4 ∙

3
5 ∙

4
5 = 0 

If the words in the given sentence are correctly tagged, we 
generate a probability greater than zero, as shown in Fig. 7: 

Fig. 7. Probability of consecutive occurrence of word groups 

We calculate the product of values of transition and 
emission probabilities corresponding to the sequence of 
words in the given sentence: 

4
4
∙

3
9
∙

3
8
∙

1
2
∙

2
8
∙

1
5
∙

1
5
∙

3
5
∙

4
5

= 0.0003 

For example, given the three POS tags we mentioned, 16 
different combinations of tags can be created. In this case, it 
seems possible to calculate the probabilities of all 16 
combinations. But when the task is to define larger sentences, 
and all the POS tags in the Penn Treebank project are 
considered, the number of possible combinations grows 
exponentially and the task seems impossible. Let's think of 
these 16 combinations as paths and assign transition and 
emission probabilities to each of the vertices and edges of the 
graph as shown in Fig. 8: 

Fig. 8. A (public) graph consisting of all POS tags matching a given 
sentence 

In the next step, all vertices and edges of the graph with 
zero probability should be removed from the graph. Also, 
vertices that do not lead to the endpoint are removed as shown 
in Fig.9: 

Fig. 9. A graph of POS tags corresponding to a given sentence 

There are only two paths from the start point to the end 
point, and we calculate the probability associated with each 
path: 

< S >→ N → N → V → V →< E > =  
4
4
∙

3
9
∙

3
8
∙

3
9
∙

2
8
∙

1
5
∙

1
5
∙

3
5
∙

4
5

= 0.0002 

< S >→ N → JJ → V → V →< E > =  
4
4
∙

3
9
∙

2
8
∙

1
2
∙

1
2
∙

1
5
∙

1
5
∙

3
5
∙

4
5

= 0.0004 

In the calculations above, the probability of the second 
sequence is much higher, and therefore the HMM labels each 
word in the sentence according to this sequence. But the 
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result is not what we expected, that is, the word "Nodirni" in 
the sentence "Zuhra Nodirni ko‘rdi" was tagged as an 
adjective. Optimizing the Markov model using the Viterbi 
algorithm can achieve the desired result. The pseudocode of 
the HMM algorithm is given below: 
σ ← k x N array 
For s = 1 … k: 𝜎𝜎[1, 𝑠𝑠] ← 𝜋𝜋(𝑠𝑠)Pr [𝑂𝑂1|𝑠𝑠] 
𝑋𝑋 ← 𝑘𝑘𝑘𝑘𝑘𝑘 array 
Populate σ and X 
For i = 2 … N: 

  For s = 1 … k: 
  𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑎𝑎𝑓𝑓𝑔𝑔𝑎𝑎𝑎𝑎𝑘𝑘{ 𝜎𝜎[𝑎𝑎 − 1, 𝑘𝑘]Pr [𝑘𝑘 → 𝑠𝑠]} 

  x 
  𝑋𝑋[𝑎𝑎, 𝑠𝑠] ← 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
  𝜎𝜎[𝑎𝑎, 𝑠𝑠] ← 𝜎𝜎�𝑎𝑎 − 1, 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�Pr[𝑘𝑘 → 𝑠𝑠] Pr [𝑂𝑂1|𝑠𝑠] 

Reconstruct OptPath: 
  𝑠𝑠 ← argmax

𝑥𝑥
{𝜎𝜎[𝑘𝑘, 𝑘𝑘]}  

Optpath ← EmptyList 
For j = N … 1: 

  Optpath ← s :: Optpath 
        if j > 1:  𝑠𝑠 ← 𝑋𝑋[𝑎𝑎, 𝑠𝑠] 
Return OptPath 

The Viterbi Algorithm is a dynamic programming algorithm 
to identify a sequence of hidden states, called a Viterbi path, 
that uses observed sequences of events, specifically Markov 
data sources and Hidden Markov Models (HMMs). 

In the comments above, the Hidden Markov model was 
optimized and the computations were reduced from 16 to just 
two. In the next step, methods of further optimization of the 
Hidden Markov model using the Viterbi algorithm are 
presented. Using the example we used earlier, we apply the 
Viterbi algorithm to it as shown in Fig.10: 

Fig. 10. A graph of POS tags compatible with the Viterbi algorithm 

In the example above, we consider a split graph vertex. 
As shown below, there are two paths leading to this peak as 
shown in Fig.11: 

Fig. 11. Paths consisting of POS tags corresponding to a given sentence 

In the next step, we analyze the path with the lowest 
probability. The same method is followed for all states in the 
graph as shown in the Fig.12: 

Fig. 12. A graph of POS labels is the probability values of the paths 

In the next step, after calculating the probabilities of all 
the paths leading to the edge of the graph, it is necessary to 
remove the edges or the path with a lower probability value. 
It can also be seen from Fig.11 that some vertices have zero 
probability. After calculating the probabilities of all paths 
leading to the end of the graph, we form the following graph 
as shown in Fig.13: 

Fig. 13. Probability values of paths in a graph of POS labels (general) 

This algorithm returns only one path, compared to the 
previous method, which offered two paths. Thus, fewer 
calculations were performed using this algorithm. After 
applying the Viterbi algorithm, the model tags the sentence 
as follows: Zuhra – noun; Nodirni – noun; so‘rab – verb; 
ko‘rdi – verb. 

These are valid tags and it can be concluded that the 
HMM model can successfully tag the words with the 
appropriate POS tags. 

V. CONCLUSION 

The hidden Markov model is a graphical model designed 
to analyze the probability of an event. The algorithms used in 
this model are used to study and infer random processes. 
Based on the observation data in the tagged national corpus 
of the Uzbek language, the conditional distribution of the 
given sentence according to the hidden cases can be 
determined, and Pos tagging can be carried out according to 
the value with the greatest probability. However, in order to 
improve the effectiveness of the Hidden Markov model 
algorithm, it is necessary to determine the sequence of hidden 
states in the form of a Viterbi path using the Viterbi 
algorithm. In this article, on the example of 4 tagged 
sentences in the Uzbek language corpus, the process of 
automatic tagging of the given sentence was carried out on 
the basis of successive steps, the results of the analysis were 
presented by means of graphs and tables. To increase the 
quality of POS tagging, it is desirable to increase the amount 
of observation data (tagged sentences in the corpus).It is also 
recommended to use the Baum-Welch algorithm to further 
improve the quality and efficiency of the analysis.  

This article is part of the innovative project №. L-
402104209 on the topic of "Creating an automatic processing 
tool for information search systems (Google, Yandex, Google 
translate) - a morpholexicon and a morphological analyzer 
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software tool of the Uzbek language" that is being 
implemented on the basis of the state order for scientific 
research works.  
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