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Abstract—The number of possible word forms in 
agglutinative languages is theoretically unlimited. This, in turn, 
creates the problem of POS tagging (part-of-speech) of out-of-
vocabulary (OOV) words in agglutinative languages. In 
agglutinative languages, words are formed by adding suffixes to 
the stem. Due to the occurrence of phonetic harmony and 
disharmony while adding suffixes to the stem, it is necessary to 
analyze both phonetic and morphological changes. When 
solving many NLP tasks, it is necessary to reduce word forms to 
the stem (stemming). Removing all inflectional affixes from a 
word and lemmatizing the rest of the word is considered one of 
the important tasks of natural language processing (NLP), and 
this process is called stemming. The stemming process is 
important in information retrieval (IR) systems. 

Keywords—part-of-speech, POS tagging, stemming, 
information retrieval, IR, stemming algorithms 

I. INTRODUCTION

Increasing the speed of returning a result that matches the 
user's query is one of the most important issue in information 
retrieval systems. The easiest and most convenient way to do 
this is through the stemming process. In NLP, the method that 
determines the general form (stem) of various morphological 
variants of a word is called the stemming algorithm [1]. To 
identify the stem in information retrieval systems, it is 
necessary to remove its suffixes and prefixes [2]. POS tagging 
is the task of determining (tagging) which type of words 
(noun, verb, adjective, number, adverb, or pronoun) belongs 
to each word in a given sentence. POS labeling is one of the 
main tasks of natural language processing (NLP) and an 
important pipeline step (Figure 1). 

Figure 1. Stages of initial text processing 

II. METHODS
POS tagging is an essential step for NLP applications such 

as machine translation, text summarization, question-
answering, and sentiment analysis, For example, the POS 
tagging is used to translate the word "olma" (an apple) into 
other languages. “Olma” (an apple) is an object if it belongs 
to the noun group, and if “ol-ma” (don't take)" it indicates an 
action and belongs to the verb group. POS tagging can be done 
with or without a dictionary. Most of the scientific studies on 
POS tagging are word-based and do not perform 
morphological segmentation of words [3]. Some agglutinative 
languages use word stems to implement the POS tagging 
process [4]. Uzbek, Turkish and Uyghur words and their stems 
may belong to different POS tags. 

TABLE 1. LEMMA, STEM AND POS TAG OF  WORD FORM IN 
AGGLUTINATIVE LANGUAGES 

Word lemma PO
S 

Stem PO
S 

stem PO
S 

Muzladi muzlamoq V
B 

muz N muz N 

Issiqroq issiq JJ isi VB isi VB 
Soddalashtiril

adi 
soddalashtir

moq 
V
B 

sodda JJ sodda JJ 

Ixtiyoriy ixtiyoriy JJ ixtiyor N ixtiyo
r 

N 

qo‘llaniladiga
n 

qo‘llamoq V
B 

qo‘l N qo‘l N 

yo‘lakda yo‘lak N yo‘l N yo‘l N 
qishlog‘im qishloq N qishlog‘ ? qishl

oq 
N 

Yetkili yetkili AD
J 

yetkili AD
J 

yetki N 

Kurullarimizl
a 

kurul N kurul N kurul N 

Teşkilatlarim
izla 

teşkilat N teşkilat N teşkil N 

seçimlere  seçim  N seçim N seç VB 
futbolcularin futbolcu N futbolcu N futbol N 

IEEE - UBMK-2023 VIII. Uluslararası Bilgisayar Bilimleri ve Mühendisliği Konferansı - 57

mailto:elov@navoiy-uni.uz
mailto:adali@itu.edu.tr
mailto:shaxlo.xamrayeva@navoiy-uni.uz
mailto:abdullayevaoqila@gmail.com
mailto:xusainovazilola@navoiy-uni.uz


Kullandi kullanmak F kulla F kulla F 
bilgi bilgi N bilgi N bil F 

tarazichi tarazichi N tarazichi N tarazi N 
yashaptu yashamaq VB yasha VB yash N 
yegizligi yegizlik N yegizlig N yegiz VB 

ogʼurluqqa ogʼurluq N og‘urluq N og‘ur N 

chүshkәnligin
i 

chүshkәnliq N chүshkәn
lig 

N chүsh ? 

The process of stemming in Turkish and Uyghur is 
described as follows: 

Stemming (Turkish and Uyghur) is the process of reducing 
a word to its core by removing inflectional suffixes. Table 2 
below lists words in Uzbek, Turkish, and Uyghur languages, 
their stems, and examples of word-forming and form-forming 
suffixes added to their stems which is shown in Table-II. 

TABLE II. STEMS AND SUFFIXES OF THE WORD FORM IN 
AGGLUTINATIVE LANGUAGES 

Til So‘zshakl Stem So‘z 
yasovchi 

qo‘shimcha 

Shakl 
yasovchi 

qo‘shimcha 
UZ ko‘zlagan = ko‘z + la 

+ gan
tinchimiz = tin + ch
+ imiz 
bilimdon = bil + im
+ don 
birlik = bir + lik 
moyladim = moy +
la + di

ko‘z 
tin 
bil 
bir 

moy 

la 
ch 
im 
lik 
la 

gan 
imiz 
don 
bir 

di +m 

TR oyuncularin = 
oyun+cu+lar+in 
futbolcularin 
= futbol+cu+lar+in 
karşilaşmalar = 
karşi+laş+ma+lar 

değerlendirilip = 
değer+len+dir+il+ip 

açikladi = 
açik+la+di 

oyun 
futbol 
karşi 
değer 
açik 

cu 
cu 
laş 
len 
la 

lar+in 
lar+in 
ma+lar 

dir+il+ip 
di 

UY tarazichi = 
tarazi+chi 
yashaptu = 
yasha+p+tu 
yegizligi = 
yegiz+lig+i 
ogʼurluqqa = 
og‘ur+luq+qa 
chүshkәnligini = 
chүshkәn+lig+i+ni 

tarazi 
yash 
yegiz 
og‘ur 

chүshkәn 

chi 
a 

lig 
luq 
lig 

- 
p+tu 

i 
qa 

i+ni 

However, the stemming process for the Uzbek language is 
described as follows: 

Stemming (Uzbek) is the task of reducing the word to its 
core by removing the derivational and inflectional suffixes 
added to it. In Uzbek, Turkish and Uyghur languages, 
sentences consist of separate words. Morphologically, words 
in these three languages are formed by adding some suffixes 
to the root. In this process, phonetic changes (phonetic 
harmony) may occur in the word, and this is directly reflected 
in the text. The root itself can also be a word that expresses the 
specific meaning of the word. Although affixes play an 
important role in the sentence, they do not have an 
independent meaning. 

Affixes are divided into derivational suffixes and 
inflectional suffixes [5]. In Turkish and Uyghur, word-
forming suffixes can form new stems (Fig. 2). Form-forming 
suffixes change only the grammatical function of the word. A 
semantic change can occur in a word by adding word-forming 
suffixes to the stem. Form-forming suffixes cause syntactic 
changes in the word. Word-forming suffixes are added to the 

root first, and then form-forming suffixes. However, it is also 
possible to add form-forming suffixes directly to the stem. 

Fig. 2. The general morphological structure of the word in the Turkish and 
Uyghur languages 

In Turkish and Uyghur, roots together with word-forming 
suffixes turn into stems. In agglutinative languages, form-
forming suffixes usually follow word-forming suffixes. 
However, in some cases, form-forming suffixes such as -gil, -
siz can come first. 

In the Uzbek language, a lexical form is preceded by a 
word-former, and as an example, we can cite the words 
o‘chirg‘ich, muzlatkich.  

o‘chirg‘ich = o‘ch (root) + ir (lexical form-former) + g‘ich 
(word former) 
muzlatkich = muz +la (word-former) +t (lexical form-
former) +kich (word-former) 
In the Turkish language, after the root, word- forming 

suffixes + lexical form- forming suffixes + word- forming 
suffixes form is found: 

baş+la+n+gıç; 
There is also a root + syntactic form- forming suffixes + 

word- forming suffixes form: 

aşağıdaki (sorular), aşağıdakiler, sınıftaki (öğrenciler), 
sınıftakiler, raftaki (eşyalar), yuvadaki [6].   
In the Uyghur language, there are also words that do not 

correspond to the order of stem + word- forming suffixes + 
form- forming suffixes, i.e., stem + form- forming suffixes + 
word- forming suffixes: 

oqu+t-quchi; qolla+n-ma[7]. 
The number of suffixes that can be added to a word and 

their numerous combinations make the of root identifying 
process in agglutinative languages a complex problem. 
Because in most agglutinative languages, combinations of 
suffixes form complex word forms.  

As can be seen from Table 2 above, Uzbek, Turkish and 
Uyghur languages look at stem and lemma differently. In the 
Uzbek language, lemma is in the form of a root or artificial 
word: book, book reader, knowledge, scholar. So, in Uzbek 
language, lemma is equal to lexeme in the dictionary. In the 
Uzbek language, cognate (base) words are counted as lemmas 
separately. In order to perform stemming in the Uzbek 
language, all suffixes up to the root of the word form are cut 
off. In a word form Maktab+dosh+lar+imiz there is a word-
forming and a form-forming suffix. In the process of 
stemming in Uzbek, all these suffixes are cut off: 

Word form: maktab+{dosh}+(lar)+(imiz) 
Lemma: maktabdosh 

Stem: maktab 
Root: maktab 

In the process of stemming in Turkish, only syntactic and 
lexical form-forming suffixes in the word form are cut, but the 
word-forming ones are left. For example: 

Word form: seçim+(ler)+(e) 
Stem: seçim 

It can be seen that in Turkish, a word-forming suffix 
remains in the stem, the difference between root and stem is 
the presence of a word-forming suffix. 
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Word form: seçim+(ler)+(e) 
Lemma: seçim 
Stem: seçim 
Root: seç 

In the process of stemming in the Uyghur language, the 
syntactic and lexical form-forming suffixes in the word form 
are cut, but the word-forming suffixes are left. 

oqutquchi 
Word form: oqut + (qu) + (chi) 
Lemma: oqut 
Stem: oqut 
Root: o 

III. RESULTS AND DISCUSSION
POS tagging of corpus texts is widely used as a clustering 

problem in NLP. Brown presented a class-based n-gram 
model based on a complex hierarchical clustering algorithm 
for learning syntactic classes of words [8]. In the study, the 
context information is entered in the form of n-grams, and in 
the initial state, each word belongs to one group. Then, each 
pair of clusters that gives the average minimum loss is 
aggregated until all clusters are merged under one cluster. In 
the next step, a binary tree representing the hierarchy between 
syntactic categories is formed. 

Banko and Moore provide a contextual HMM tagger for 
each word based not only on the current word "tag" but also 
on three neighboring tags, including previous and subsequent 
word "tags" (valence) [9]. Compared to the basic HMM, this 
model included more contextual information and showed 
efficient results. 

Johnson compared the various parameters used in HMM-
based POS tagging. For this purpose, he used Expectation 
Maximization (EM), Variational Bayes and Gibbs sampling 
[10]. The study showed the low efficiency of EM algorithm 
compared to Gibbs sampling and variational Bayes estimator. 

Researches on stemming. Modern stemming algorithms 
are generally divided into three classes: rule-based, statistical, 
and hybrid algorithms (Fig. 7). Rule-based stemmers aim to 
identify stems using non-automatic rules. Popular rule-based 
stemmers include Lovins [11], Porter [12] and Krovets [13]. 
Rule-based stemming algorithms are usually controlled. 

Fig. 3. Classification of stemming algorithms 

Statistical stemming algorithms use statistical methods to 
learn stems. Xu and Croft [14] presented a method that uses a 
random statistical term to overcome the shortcomings of 
Porter's stemming. Based on the data of random statistics, they 
applied a graph partitioning algorithm to reduce the number of 
classes generated by Porter's stemmer [15]. 

Hybrid stemming algorithms combine rule-based and 
statistical methods into a single system. Some hybrid 
stemming algorithms have been developed by Shrivastava 
[16], Goweder [17] and Adam [18]. 

A method for implementing Turkish stemming was 
introduced by Köksal [8]. This method is based on considering 
the first 5-6 letters as the root. Kut et al. developed a method 
called L-M (Longest Match) in their research. Using a 
dictionary containing word stems and their possible forms, the 
method compares the stem word with the words in the 
dictionary from left to right. The longest matching word is the 
stem. 

Solak and Can [1] used a dictionary of roots to identify 
stems. Each stem is recorded as having 64 features 
corresponding to the left-to-right stemming methods. Letter 
units are mapped to the root lexicon in left-to-right order, and 
if a matching stem is found, the system determines possible 
stems based on additional rules. This research, called the AF 
algorithm, is basically a variant of the morphological analysis 
method developed by Oflazer. 

FindStem is a stemming method developed by Sever and 
Bitirim [3], which mainly includes three steps: stem detection, 
stem morphological analysis, and detection. The method uses 
a dictionary containing morphological and POS features of 
words, syntactic rules. Sever and Bitirim claim that the 
FindStem algorithm works better and more efficiently than the 
AF and L-M algorithms. 

Other analytical methods for determining the stem of 
Turkish words include the "zemberek" algorithm developed 
by Akin [19] and the "snowball" algorithm developed by 
Childen [3]. Also, Dincher [20] proposed a method for solving 
the boundary between the root and the suffixes using n-gram 
statistics. As a result of the application of this research, the 
efficiency was 95.8%. 

Aishan Wumaier and other researchers developed a new 
Uyghur noun stemming method in 2009 [21]. The Uyghur 
noun stemming method was implemented in 2 stages: 

• Uyghur language using FSM additions;
• Using the CRF method to eliminate ambiguities

caused by Uighur FSM suffixes.
In the first stage, the process of Uyghur noun stemming 

was developed using FSM noun suffixes. The stemming 
process was performed on 55,625 input words, and as a result, 
6,239 incorrect over-stemming words were identified. In the 
second stage, 55125 word corpus was built by determining the 
inaccuracies that occurred during the stemming process using 
the CRF method. The corpus consists of 17317 words with 
indefinite adverbs, 6239 words without correct adverbs and 
11078 words with correct adverbs. The result of the algorithm 
shows that the recall rate was 88.78% when FSM additives 
were used, and the recall rate was 94.04% when FSM and 
CRF were used. In conclusion, using the CRF method 
improves the recovery rate by 5.26%. 

In 2012, Azragul, Qixiangjwei, and Yusupulla developed 
a Uyghur language stemmer [22]. They used a dictionary-
based method. During the operation of the algorithm, the 
entered word is searched from the stem dictionary. In this 
case, a word is separated using a dictionary of suffixes, and a 
candidate word separated by removing the suffixes is searched 
in the dictionary. 

Studies have shown that previous studies used an incomplete 
vocabulary (open vocabulary) and the inaccuracies resulting 
from stemming were subsequently resolved by other methods. 
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IV. STUDY OF THE PROBLEM
4.1. Problems In The Stemming Process 

The following issues may occur during stemming: 

1) the stem and suffix are homonymous with one stem;
2) the occurrence of a sound change in the word;
3) stemming neologism and NERs.

The stem and suffix are homonymous with one stem. 
Today, various stemming methods have been developed for 
natural language words. Modern stemming algorithms are 
being developed without using any syntactic information. 

Also, traditional stemming methods (algorithms) are based 
on suffixes and some morphological rules, and as a result of 
the stemming process, ambiguity in the stem may occur. 
Determining a polysemous stem is a more complex process, 
and sentence-level semantic information is ignored in the 
stemming process. Sometimes the POS tag of a word may not 
be the same as the POS tag of its root. 

In the Uzbek language, there is also a phenomenon of 
homonymy between word-forming and form-forming 
suffixes. This creates a problematic situation in the stemming 
process. Table III below provides a list of homonyms: 
TABLE III. HOMONYMY BETWEEN WORD-FORMING AND FORM-

FORMING SUFFIXES 
Shakl yasovchi qo‘shimcha So‘z yasovchi qo‘shimcha 

-ay (lug‘aviy shakl yas.) boray  kuchay (fe’l) 
-gi (lug‘aviy shakl yas.) borgim supurgi (ot), yozgi (sifat)  
-da (sintaktik shakl yas.) uyda undamoq (fe’l) 
-i (sintaktik shakl yas.)  do‘sti jannati (sifat), boyi (fe’l)  
-in (lug‘aviy shakl yas.) ko‘rin ekin (ot), sog‘in (sifat) 
-im (sintaktik shakl yas.) uyim bilim (ot), ayrim (sifat) 
-ir (lug‘aviy shakl yas.) o‘chir gapir (fe’l) 
-iq (lug‘aviy shakl yas.) siniqmoq yo‘liq (fe’l), ochiq (sifat), chiziq (ot)  
-y (lug‘aviy shakl yas.) o‘qiy  qoray (sifat) 
-k (sintaktik shakl yas.) bordik to‘shak (ot), chirik (sifat) 
-ka (lug‘aviy shakl yas.) surka iska (fe’l) 
-kin ((lug‘aviy shakl yas.) to‘kkin epkin (ot), keskin (sifat) 
-la (lug‘aviy shakl yas.)  quvla  so‘zla (fe’l) 
-lab (lug‘aviy shakl yas.) yuzlab haftalab (ravish) 
-m (sintaktik shakl yas.) otam, 
ko‘rdim 

to‘plam  (ot) 

-ma (lug‘aviy shakl yas.)  
gapirma 

qatlama (ot), bo‘g‘ma (sifat) 

-moq (lug‘aviy shakl yas.) 
ichmoq 

quymoq (ot) 

-sa (lug‘aviy shakl yas.) kelsa suvsa (fe’l) 
-siz (sintaktik shakl yas.) yozasiz yuzsiz (sifat), to‘xtovsiz (ravish) 

TABLE IV. STEMS AND SUFFIXES OF WORD FORM IN 
AGGLUTINATIVE LANGUAGES 

Til So‘zshakl 1-ma‘nosi 2-ma‘nosi 
Turk gelecek keladi (will come) kelajak (future) 
Uyg‘ur alma ol+ma (don’t take) olma (apple) 
O‘zbek  quymoq quy+moq (pour) quymoq (panke) 

The ambiguity of the stem in Uzbek language sentences 
can be seen in the following Figure 3: 

Fig. 4. Stem ambiguity in Uzbek language sentences 

In Turkish 
1) meaning: Kış yine gelecek. (Winter will come again)
2) meaning: Gelecek hakkında ne düşünüyorsunuz?

(What do you think about the future?)

In Uyghur: 
1) meaning: Qalamni qolunga olma. (Don't take your

pen.)
2) meaning: U bazardin olma setiwaldi. (He sold apple

on the market.)
In Uzbek: (quymoq) 
1) meaning: Zarifa mehmonlarga choy quymoqchi

bo‘ldi. (Zarifa wanted to pour tea for the guests.)
2) meaning: Ertalab nonushtaga quymoq tayyorlandi.

(In the morning, pudding was prepared for
breakfast.)

Various problems can occur during the POS tagging 
process. One of them is the ambiguity in POS tagging. Words 
can belong to different word groups depending on their 
syntactic role in a sentence. The correct POS tag of a word 
helps to find its stem. For example, in Turkish 

1) Aydınlık gelecek günler bizi bekliyor. (Brighter days await
us in the future).

2) Ahmet birazdan gelecek. (Ahmat is coming soon);
gelecek in the first sentence is an adjective, and the root is 

gelecek (future). In the second sentence, gelecek is a verb, and 
the stem is gel-(mek) (to come). From the above 
considerations, it can be noted that POS tagging process plays 
an important role in stemming. 

We can observe a similar situation in the Uyghur language. 
For example, the word olma is stemmed in the form of apple 
in the meaning of apple fruit, and ol-ma as a verb is stemmed 
in the form of olma. In stemming, the difference in word forms 
from POS tagging can also be observed in the word kelgüsi. 

1) Kelgüsi ishimni planladim. (I planned my future work)
2) Bala ete kelgüsi. (Child is coming soon)

In the first sentence kelgüsi is an adjective, and the stem is 
kelgüsi (the future). In the second sentence, kelgüsi is a verb 
in the future tense, and the stem is in the form kel-(mek) (to 
come). 

In the Uzbek language, the stem and suffix can be 
homonymous with one stem, and the complications in POS 
tagging and stemming can be observed in many examples. For 
example, tortma, olma, yozma, o‘sma and etc are word forms. 
These words are in the form of stem tortma - tort-(moq), olma-
ol-(moq), yozma-yoz-(moq), o‘sma-o‘s-(moq), and POS 
tagging is defined as a noun and a verb. For example: 

1) Sen bozordan kitob olma (Don't buy books from the
market)

2) Akbar kecha olma yedi. (Yesterday Akbar ate an apple)
Here, in the first sentence, olma is a verb with a negative 

meaning, and the stem is in the form of ol-(moq), in the second 
sentence, olma is a noun, and the stem is also olma. From the 
above considerations, it can be seen that in all three Turkish 
languages, there is a case where the root and the suffix are 
homonymous with one root, and in this case, it can be noted 
that the process of POS tagging plays an important role in 
stemming. 

The Occurrence of a Sound Change in The Word 
Phonetic changes (insertion, deletion, phonetic harmony, 

and assimilation) may occur in some cases as a result of 
adding form-forming suffixes to the last letters of the stem. In 
agglutinative languages, three types of phonetic changes can 
be made in a word, such as sound increase, decrease and 
exchange (weaking, assimilation). (Table V). 
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TABLE V. DEFICIENCIES IN THE STEMMING PROCESS IN 
AGGLUTINATIVE LANGUAGES 

O‘zbek Turk Uyg‘ur 
to‘g‘ri xato to‘g‘ri xato to‘g‘ri xato 

lavozim+ida 
ish+lagan 

boshlig‘i  
san+aydi 

yara+landi
ğini 

belirt+ti 

ögre-
nlere 

jandar+
maliğin

a 

yoğ+an 
eshek+
medeği 

binay+im 
oghl+um 

hafta+larida tarog+`ini ara+sinda rastla+d
iği 

chaplish
+ivalid

u

yot+im 

bo‘lim+i 
hokim+ining 
ish+lagan  

me+ning 
obro‘y+im
iz 
achch+iq 

koşul+lard
a 

gösteri+ci
nin 

belir+li 

iznin+e 
geti+rili

yor 

bash+la
pti 

dep+ti 
ini+sini

n 

yurag+im 
shahr+im 

Fig. 5. Increase in sound in the word 

Fig. 6. Decreasing of sound in a word 

Fig. 7. Sound exchange in a word 

In order to solve the problem of sound change in stem 
detection, the boundaries of the stem and affix are determined 
in the first step, and the lemmatization is performed in the 
second step. As a result of lemmatization, the wrong stems are 
changed to the root in the dictionary. 

4.2. Stemming Neologisms and Ners. Problems of Stemming 
Ners 

The suffix -lik is derived mainly from nouns, adjectives, 
and adverbs. Words made from lexemes related to the noun 
family have different meanings depending on the nature of the 
object represented by the constituent base: 

1) when it is made from words denoting a person (otalik,
onalik, tog‘alik, o‘g‘illik, farzandlik, erlik, xotinlik;)
Nouns made from words denoting a certain period of
life (bolalik, yigitlik, qizlik, o‘smirlik, kelinlik,
kuyovlik)nouns made from words denoting the owner
of a profession or title (mudirlik, o‘qituvchilik,
qassoblik, chorvadorlik, tabiblik, suvchilik, 
sartaroshlik, savdogarlik, rassomlik, shofyorlik,
aktyorlik);

2) a noun denoting the object occupied by the thing
understood from the base (botqoqlik, qumlik, muzlik);

3) a noun denoting the part of the earth's surface
understood from the constituent base (jarlik, do‘nglik,
qiyalik, pastlik, ichkarilik, yalanglik).

By combining adjectives and adverbs, a noun is formed: 
(qizillik, semizlik, xursandlik, aniqlik) In such cases, the word-
forming suffixes in their content are cut, and the remaining 
part is considered as a stem. But when the suffix -lik is added 
to the proper nouns denoting the name of a place, they become 
a common noun and is written with a lowercase letter: 
(samarqandlik, buxorolik, amerikalik, o‘zbekistonlik, 
turkiyalik, arabistonlik). In this case, the suffix - -lik cut off, 
the remaining part is understood as a stem, converted to a 
capital letter and recognized as NER. 

samarqandlik = Samarqandlik 
amerikalik = Amerikalik 
kanadalik = Kanadalik 

When there is a problem of finding the stem of NERs, the 
form-forming suffixes are cut off, the suffix of the word-
forming form or part of the word is left, this part is considered 
NER: the stem of the word form O‘zbekistondan is 
O‘zbekiston. There are suffixes that  have functions as word-
forming suffix and form-forming one (Table VI). 

TABLE VI. WORD-FORMING AND FORM-FORMING 
HOMONYMOUS SUFFIXES 

the form-forming and word-forming suffixes 
-ay -k -chak 
-gi -ka -chiq 
-da -kin -choq 
-i -la -qa 
-in -lab -qin 
-im -m -sa 
-ir -ma -siz 
-iq -moq -xon 
-y -cha 

When such suffixes appear in the composition of words 
written with a capital letter, if there are form forming suffixes 
and word-forming suffixes in its composition, the word 
remains in the composition of the form and is considered a 
stem in this form. For example, the word Jon Kennedi (John 
Kennedy) contains the letter -i. Since the program does not 
know the stem, that is, the word does not exist in the dictionary 
of the Uzbek language, it cannot distinguish the stem, as a 
result, it can cut the suffix -i and take the word Kenned as the 
stem. In order to avoid such a situation, any unit that is cognate 
with a suffix that creates homonymy between the form-maker 
and word-formers is left in the word-form. 

4.3. Problems of Stemming Neologisms 
Neologism expressing new things and concepts that 

appeared with the development of society, the needs of life. 
The novelty of neologisms is noticeable only at the time of 
their initial appearance: over time, they lose the "novelty" 
feature and usually become active words. There are types of 
neologism such as formal neologism, semantic neologism, 
functional neologism, social neologism, technological 
neologism, stylistic neologism. There are different ways of 
neologisms, they are created by creating a new word based on 
the existing lexical structure of the language and grammatical 
rules, as well as by using one of the dictionary meanings of 
the existing word in a new sense and by adopting a word from 
another language. Neologisms include suffixes such as - ism 
(neologism), -ik (daltonik), -la (gugllash). 

Since neologisms are not in the dictionary, problems arise 
in their stemming. Among them are the additions in their 
composition, the problems of a part of the word resembling a 
suffix. In this case, existing suffixes in the database of form-
forming additions will be cut. The remaining part corresponds 
to the stem. The stem corresponding to neologisms and NERs 
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in the Uzbek language corresponds to the definition of the 
stem in the Turkish and Uyghur languages given in Figure 2 
above. 

V. CONCLUSION
The implementation of POS tagging and stemming 

through a dictionary is a challenge for many natural language 
processing tasks. Using a language corpus for POS tagging 
and stemming solves problems with vocabulary. Various 
experiments on language corpora show that combining stem 
information with a syntactic task improves the POS tagging 
result for a morphologically rich language, which improves 
the solving efficiency of the NLP task. In the article, several 
different joint models are presented, which assume different 
dependencies. Overall experimental results show that the 
Bayesian HMM model using neural word embeddings 
outperforms other models for the POS tagging task. Also, 
when using the semantic similarity between the stem and the 
words to determine the inflectional morphology, the 
inflectional suffixes do not change the meaning of the word. 
For this purpose, the method of neural word embeddings 
obtained from word2vec should be used. The results show that 
using semantic information significantly improves stemming 
and POS tagging. 
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