
LN
CS

 1
37

41
Hakimjon Zaynidinov
Madhusudan Singh
Uma Shanker Tiwary
Dhananjay Singh (Eds.)

Intelligent
Human Computer
Interaction
14th International Conference, IHCI 2022
Tashkent, Uzbekistan, October 20–22, 2022
Revised Selected Papers

Lecture Notes in Computer Science 13741
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Hakimjon Zaynidinov · Madhusudan Singh ·
Uma Shanker Tiwary · Dhananjay Singh
Editors

Intelligent
Human Computer
Interaction
14th International Conference, IHCI 2022
Tashkent, Uzbekistan, October 20–22, 2022
Revised Selected Papers

Editors
Hakimjon Zaynidinov
Tashkent University Information
Technologies
Tashkent, Uzbekistan

Uma Shanker Tiwary
Indian Institute of Information Technology
Allahabad, India

Madhusudan Singh
Oregon Institute of Technology
Klamath Falls, USA

Dhananjay Singh
Hankuk University of Foreign Studies
Yongin, Korea (Republic of)

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-27198-4 ISBN 978-3-031-27199-1 (eBook)
https://doi.org/10.1007/978-3-031-27199-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8098-5246
https://orcid.org/0000-0001-7206-9013
https://orcid.org/0000-0001-6913-5200
https://orcid.org/0000-0003-3822-9348
https://doi.org/10.1007/978-3-031-27199-1

Contents

Deepfake Video Detection Using the Frequency Characteristic of Remote
Photoplethysmography . 1

Su Min Jeon, Hyeon Ah Seong, and Eui Chul Lee

A Multi-layered Deep Learning Approach for Human Stress Detection 7
Jayesh Soni, Nagarajan Prabakar, and Himanshu Upadhyay

Digital Processing Algorithms of Biomedical Signals Using Cubic Base
Splines . 18

Mukhriddin Abduganiev, Rakhimjon Azimov, and Lazizbek Muydinov

Methods for Creating a Morphological Analyzer . 27
Elov Botir Boltayevich, Hamroyeva Shahlo Mirdjonovna,
and Axmedova Xolisxon Ilxomovna

Uzbek Speech Synthesis Using Deep Learning Algorithms 39
M. I. Abdullaeva, D. B. Juraev, M. M. Ochilov, and M. F. Rakhimov

Speech Recognition Technologies Based on Artificial Intelligence
Algorithms . 51

Muhammadjon Musaev, Ilyos Khujayarov, and Mannon Ochilov

Multimodal Human Computer Interaction Using Hand Gestures and Speech . . . 63
Mohammed Ridhun, Rayan Smith Lewis, Shane Christopher Misquith,
Sushanth Poojary, and Kavitha Mahesh Karimbi

Emotion Recognition in VAD Space During Emotional Events Using
CNN-GRU Hybrid Model on EEG Signals . 75

Mohammad Asif, Majithia Tejas Vinodbhai, Sudhakar Mishra,
Aditya Gupta, and Uma Shanker Tiwary

Multiclass Classification of Online Reviews Using NLP & Machine
Learning for Non-english Language . 85

Priyanka Sharma and Pritee Parwekar

A Higher Performing DARTS Model for CIFAR-10 . 95
Jie Yong Shin and Dae-Ki Kang

Methods for Creating a Morphological Analyzer

Elov Botir Boltayevich(B) , Hamroyeva Shahlo Mirdjonovna ,
and Axmedova Xolisxon Ilxomovna

Tashkent State University named after Alisher Navoi University of Uzbek Language and
Literature, Tashkent O’qituvchi Street 103, Tashkent, Uzbekistan

{elov,a.xolisa}@navoiy-uni.uz

Abstract. Themorphological analysis process is an important component of natu-
ral language processing systems such as spelling correction tools, parsers,machine
translation systems, and electronic dictionaries. This article describes the stages of
a text analyzer,methods for creating amorphological analyzer and amorphological
generator. Ways to use the NLTK package tools in Python when creating a mor-
phological analyzer, examples of software codes are given. Also, morphological
analyzer structure and architecture are presented on the basis of the morphological
analysis process (flexion, derivative, affixpids detection, compound forms).

Keywords: Natural language processing · NLP · Python ·Morphological
analyzer · Token · Lemmatization · Stemming ·Morphological generator ·
Search engine · Stemming algorithm · PorterStemmer

1 Introduction

Morphology is a section that studies the grammatic meanings of words through mor-
pheme.Morpheme is the smallest unit of language that can not be divided intomeaningful
parts. This article analyzes the issue of creating morphological analyzer and morpho-
logical generator for languages other than English using stemming and lemmatization,
stemmer and lemmatizer, machine learning tools, search engines. Today, a number of
scientists around the world are conducting scientific research on the creation of a mor-
phological analyzer. In particular, AdnanÖztürel, TolgaKayadelen and ISINDemirsahin
presented a broad coverage model of Turkish language morphology and an open source
morphological analyzer that implements it [1]. This model covers the subtle aspects of
Turkish morphology, syntax, from which it can be used as a guide in the development
of a language model. The Model performs Turkish morphotactic using OpenFst as finite
state transducers and Morphophonemic processes Thrax grammatics. Arabic linguists
Y. Jeefer and K. Bouzoubaa Arabic Morphological Analyzers presented the methods of
use in syntactic analysis programs, search engines and machine translation systems.

2 Materials and Methods

Natural Language understanding the first version of the Arabic language corps dedicated
to the evaluation of Natural Language was created [2]. The four most common and

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Zaynidinov et al. (Eds.): IHCI 2022, LNCS 13741, pp. 27–38, 2023.
https://doi.org/10.1007/978-3-031-27199-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27199-1_4&domain=pdf
http://orcid.org/0000-0001-5032-6648
http://orcid.org/0000-0003-3018-1386
http://orcid.org/0000-0002-9828-1650
https://doi.org/10.1007/978-3-031-27199-1_4

28 E. B. Boltayevich et al.

most advanced morphological analyzers (Hunmorf-Okamorf, Hunmorf-Foma, Humor
and Hunspell) for the Hungarian language were analyzed, compared by G. Szabó, L.
Kovács. They compared the token systems of annotation instead of the lemmatization
properties of analyzers [3].

1. NLPni ikkita asosiy komponentga ajratish Understanding, NLU).
2. Tabiiy tini generatsiya qilish (Natural Language Generation, NLG).

The steps required in the performance of NLP tasks will be considered. The source
of the natural language can be speech (sound) or text. Stages of text processing are
presented in Fig. 1.

Fig. 1. Stages of text analyzer

In the field of Uzbek computer linguistics, morphological analyzer and morpholog-
ical generator has not yet been created. In this article, we will consider ways to solve
this issue based on world experience.

When creating a morphological Analyzer, It is worthwhile to study the following
concepts:

1. morphological units;
2. stemmer;
3. lemmatization;
4. development of Stemmer in Uzbek language;
5. Morphological Analyzer;
6. Morphological Generator;
7. search engine development.

3 Morphological Units

Morpheme is the smallest meaningful part of the language. Morpheme is divided into
two types: the limbs are also referred to as free morphemes, since they can also be used
without adding affix (suffix) in sentences. (Additional) are not used separately in the
language. Because they can not have a lexical meaning in an independent forms and
always exists together with independent morphemes. Let’s look at the word unbeliev-
able in English. Here the believe is a predicate or a free morpheme. It means quot;
independently; flour and able morphemes are affiks (addition) or paired morphemes.
These morphemes can not exist in an independent form, they do not mean, they are used
together with the core [22, 23].

Methods for Creating a Morphological Analyzer 29

Natural languages according to the formation of the grammatic form are divided into
the following groups:

1. (isolating languages) – Languages of the peoples of South East Asian countries [24];
2. (agglutinative languages) – Turkic, bantu, Mongolian, Finnish-Ugric languages [22,

25];
3. (inflecting languages) – Indo-European and families of som languages [26, 27].

1. The dictionary composition of these languages consists mainly of singlestringed
limbs, which do not have features of punctuation, punctuation. Therefore, in these
languages word-building exercises, there are only loads that perform the function
of auxiliary words. In amorphous languages, words consist only of independent
morphemes; they do not include the data of the time (past, present and future) and
the number (Unit or plural).

2. In agglyutinative languages, words will consist of a suffix and a suffix attached to it;
the morphological composition of the word (suffix) is clearly distinguished. Bunda
represents each additional separate meaning, task. For example, in Turkic languages,
includingUzbek, the forms ofwords andwords are formed by the addition of suffixes
to the basis with a certain consistency.

3. Flektiv languages – it is characterized by the fact that the appendages merge with
the core and are absorbed into it. In such languages, thematikmatic meanings are
expressed by inflection, book in Arabic (unit) (plural). In Russian, the drug (unit)
is a druzya (plural). Flektiv languages include IndoEuropean and som language
families. Flektiv languages are divided into synthetic and analytical languages. In
synthetic languages, the grammatic meanings (interaction of words in the sentence)
are expressed by means of form-forming suffixes (eg., Russian, German). In analyt-
ical languages, the grammatic meanings are expressed not by means of word forms
(form- forming suffixes), but bymeans of auxiliary words, word order, tone(English,
French, Spanish). In Flektiv languages, words are divided into simple units, all these
simple units show different meanings.

4. Polisynthetic languages– themain unit of speech is the word-sentence. There can not
be a strict limit between the classified languages, since some language phenomena
that occur in one language can also occur in others. For example, Oceanic languages
can be described as both amorphous and agglyutinative languages [28].

Morphological (typological) classification of languages it is important to group the
languages of the world according to certain morphological features, to create a general
drawing of them [29, 30, 31].

Morphological processes are divided into the following others [32]:

1. (inflection);
2. (derivation);
3. (semiaffixes);;
4. (combining forms);
5. (cliticization).

30 E. B. Boltayevich et al.

On the basis of this stage, the structure of the work of the morphological analyzer
of the Uzbek language is shown in Fig. 2 below:

Fig. 2. Morphological analyzer structure

At the stage of infection, the word is transformed into a form that expresses the
person, Number, time, gender and other grammatic categories. At this stage, the syntactic
category of the lexeme remains unchanged.

At the stage of derivation, the syntactic category of the word changes. At the stage
of determining semifixes, morphemes are formed in the form of compound words,
abbreviations. For example: noteworthy, antisocial, anticlockwise, etc.

Stemmer: In the process of stemmatization, the determination of the word core is
carried out by removing suffixes from the word [33–35]. For example, the question from
nature is analyzed as follows: from [nature] (conjugate suffixes Yas forming a syntactic
form)

Search engines (Google, Yahoo, Yandex) use stemming mainly in identifying cores
and storing them as indexed words in order to increase the accuracy of the search for
information. Search engines call words that have the same meaning as synonyms, and
this query can be some kind of more accurate implementation of the results.

Currently, many moroanalysts are using the stemming algorithm, developed byMar-
tin Porter. This algorithm is designed to replace and analyze suffixes that are present
mainly in English words. To implement stemming in the NLTK package, we can create a
copyof thePorterStemmer class, and then execute stemmingbycalling the stem()method

Methods for Creating a Morphological Analyzer 31

(Fig. 3). In NLTK, wewill consider the stemming process using the PorterStemmer class
[36, 37]:

import nltk
from nltk.stem
import PorterStemmer
stemmerporter = PorterStemmer()
print(stemmerporter.stem(’removing’))
print(stemmerporter.stem(’happies’))
result

remov
happi

PorterStemmer the class has a lot of vocabulary and word forms in English. The
process of determining the cores consists of several stages: the word shorter becomes
a word or a form with a similar meaning. The Stemmer I interface defines the stem ()
method and all Stemmers are sampled from the Stemmer I interface [36].

Fig. 3. Stemming methods in the NLTK package

Another stemming algorithm, known as the Lancaster stemming algorithm, was
developed at Lancaster University. Similar to the PorterStemmer class, the Lancaster
Stemmer class is also used to implement Lancaster stemming in NLTK. But the main
difference between the two algorithms is that Lancaster stemming involves the use of
more words of different characteristics in comparison with Porter Stemming.

32 E. B. Boltayevich et al.

from nltk.stem import LancasterStemmer
stemmerlan=LancasterStemmer()
print(stemmerlan.stem(’remov’))
print(stemmerlan.stem(’happies’))

remov
happy

We can also build our own Stemmer in NLTK using Regexpstemmer. It works
by taking a line and removing the prefix or suffix of the word when compatibility
is found. Let’s look at an example of stemming using Regexpstemmer in NLTK:

from nltk.stem import RegexpStemmer
stemmerregexp=RegexpStemmer(’ing’)
print(stemmerregexp.stem(’removing’))
print(stemmerregexp.stem(’happiness’))
print(stemmerregexp.stem(’pairing’))

remov
happiness
pair

We can use Regexpstemmer in cases where it is not possible to detect the core using
PorterStemmer and LancasterStemmer. SnowballStemmer is used to perform stemming
in 13 languages apart from English. To perform stemming with the help of snowststem-
mer, first of all, it is necessary to specify tilni where the stemming should be performed.
Then, using the steam() method, stemming is performed. With the help of snowst-
stemmer, the process of stemming in NLTK in Spanish and French is carried out as
follows:

import nltk
from nltk.stem import SnowballStemmer
print(” ”.join(SnowballStemmer.languages)) //see which languages are supported
spanishstemmer=SnowballStemmer(’spanish’) // language selection
print(spanishstemmer.stem(’comiendo’))
frenchstemmer=SnowballStemmer(’french’) //language selection
print(frenchstemmer.stem(’manger’)) // word steam

Let’s look at the following code available, which allows us to implement stemming:

Class StemmerI(object):
”””
”””
def stem(self, token):
”””
”””
raise NotImplementedError()

Methods for Creating a Morphological Analyzer 33

With the help of several Stemmers, we will consider the code that will be used to
perform stemming:

import nltk
from nltk.stem.porter import PorterStemmer
from nltk.stem.lancaster import LancasterStemmer
from nltk.stem import SnowballStemmer
def obtain-tokens():
text-file = open(”D:/Examples/Examples.txt”, ”r”)
stem = text-file.read()
text-file.close()
tok = nltk.word-tokenize(stem)
return tok
def stemming(filtered):
stem=[]
for x in filtered:
stem.append(PorterStemmer().stem(x))
return stem
tok=obtain-tokens()
print(”tokens is %s”) stem-tokens= stemming(tok)
print(stem-tokens)
print(”After stemming is %s’”)
res=dict(zip(tok,stem-tokens))
print(res)

3.1 Lemmatization

Lemmatization is the process of determining the shape of the head (lexical appearance)
of the word. The word formed after the lemmatization plays an important role. Through
the morphy () method, the lemmatization process is performed in Wordnetlemmatizer.
If the entered word is not found in the WordNet, it remains unchanged. Pos is formed
part of the word category of the word entered in the argument. Let’s look at the process
of lemmatization in nltk [36, 38–40]: in the argument. Let’s look at the process of
lemmatization in nltk [36, 38–40]:

import nltk
from nltk.stem import WordNetLemmatizer
lemmatizer-output=WordNetLemmatizer()
print(lemmatizer-output.lemmatize(’working’))
print(lemmatizer-output.lemmatize(’working’,pos=’v’))
print(lemmatizer-output.lemmatize(’works’))

WordNetLemmatizer the library generates Lemma through the Murphy () method
using an information system (ontology) called WordNet Corps. If the lemma is not

34 E. B. Boltayevich et al.

formed, the word is returned in the initial (original) form. For example, the returned
lemma unit forms for works: work. In the Uzbek language, the word lemmasi stemi of
books will be a book. The following program code shows the difference between the
stemming and lemmatization processes:

import nltk
from nltk.stem import PorterStemmer
stemmer-output=PorterStemmer()
print(stemmer-output.stem(happiness)) from nltk.stem import WordNetLem-
matizer
lemmatizer-output=WordNetLemmatizer()
print(lemmatizer-output.lemmatize(’happiness’))

happi
happiness

In the previous code, happiness became happi as a result of the stemming process.
Lemmatization can not find the core of the word happiness. Therefore, he returns the
word happiness. The process of stemmatization in the Uzbek language is relatively easy,
since in the Uzbek language lemmings often correspond to stem. But in the Uzbek
language, too, cases of Flexion are flying. For example: in words such as: achievement,
interrogative, the predicate is not an achievement, but an achievement, in the form of an
interrogative. In such cases, the method of finding stem is used as above.

Polyglot – the software used to provide models called morphessor models, which are
used to identify morphemes from tokens [41, 42]. The purpose of the Morpho project is
to generate unmanaged processes for processing information. On the basis of theMorpho
project, morphemes with the smallest unit of the syntax are created. Natural language
morphemes play an important role in processing. Morphemes are used in automatic
recognition and creation. With the help of polyglot’s dictionaries, morphessor models
were developed in 50000 tokens of different languages.

3.2 Morphological Analyzer

NIn the process of morphological analysis, the acquisition ofmatikmatic informa-
tion is carried out taking into account the meanings of tokens based on attachments.
Morphological analysis can be carried out in three ways:

1. morphology based on morpheme;
2. morphology based on lexeme;
3. ordinal-based morphology.

Morphological Analyzer is interpreted as a program that is responsible for analyzing
the morphological composition of a particular token. Morphological analyzer analyzes
the given token and form data such as Category, variety of meanings. To carry out
morphological analysis on a token without a given space, a pyEnchant dictionary is

Methods for Creating a Morphological Analyzer 35

used. To determine the type of word, a set of rules is required. We can determine the
word category by the following rules:

1. Morphological rules. Information about suffixes will help to determine the word
category. For example, in English, the suffixes-ness and-ment are combined with
nouns. So in English it is possible to determine its category, depending on the suffixes
thatmake up theword chord. But inUzbek it is not possible to determine the category
of the word by this method. Therefore, the Uzbek language morpholexicon should
be developed.

2. Syntactic rules. Contextual information helps to determine the word category. For
example, if we find a word belonging to the category of nouns, then the syntactic rule
is useful to determine whether the adjective comes before or after the noun category.

3. Semantic rules. Semantic rules are significant in determining the word category. For
example, if it is determined that the word represents the place name, then it can be
concluded that the noun belongs to the category of speech.

4. Open class (group). Every day a new word is added to the list of words in this group,
their number increases. Words in the open class are usually words belonging to the
category of nouns. Prepositions, in principle, belong to the closed class. For example,
in the list there can be an infinite number of words.

5. Definition of word categories (POS, Part of Speech): a set of tags of word categories
contains information that helps to determine themorphological feature. For example,
oynadi Sor comes with a word belonging to the noun category in the third person
unit.

6. Omorf package is licensed by GNU GPL version 3, it is used for many functions
such as modeling, morphological analysis, rules-basedmachine translation, and data
search, statisticalmachine translation,morphological segmentation, ontologies, spell
checking and Correction.

3.3 Morphological Generator

Morphological generator is a program that performs the function of morphological
generalization; it can be considered a dependent function of morphological analysis.
Here the original word is formed if the description of the word according to the number,
Category, core and other information is given. For example, ozak=bormoq, gap bolagi
= kesim, zamon=hozirgi and when a third person comes along with the subject
of the unit, morphologically generator forms its becoming form. There are many
Python-based software applications that performmorphological analysis and generation:

1. ParaMorfo: It is a noun in Spanish and guarani, used for morphological formation
and analysis of adjectives and verbs.

2. HornMorpho: It is used for morphological formation and analysis of nouns and
verbs in the Oromo and Amharic languages, as well as Tigrinya verbs.

3. AntiMorfo: It is used for morphological creation and analysis of adjectives, verbs
and nouns in the night language, as well as Spanish verbs.

4. MorfoMelayu: It is used formorphological analysis ofwords in theMalay language.
5. Morph morphological generator and analyzer for English.

36 E. B. Boltayevich et al.

6. Morphy morphological generator for German language, analyzer and POS tagger.
7. Morphisto it is a morphological generator and analyzer for the German language.
8. Morfette performs controlled learning (flexionmorphology) of Spanish and French.

From the above feedback, it is possible to formulate the architecture of the text
analyzer software (Fig. 4) as follows.

Fig. 4. Text Analyzer Software Architecture

4 Conclusion

There are many networks of computer linguistics. For processing (analysis) or general-
ization of the text, it is necessary to perform a number of linguistic actions on the given
text. This article considered the implementation of stemming, lemmatization and mor-
phological analysis and generalization activities with the help of NLTK package tools.
Also, search engines and methods of their implementation were discussed.

Methods for Creating a Morphological Analyzer 37

References

1. Öztürel, A.,Kayadelen, T.,Demir¸sahin, I.: A syntactically expressivemorphological analyzer
for Turkish. In: FSMNLP 2019 14th International Conference on Finite-State Methods and
Natural Language Processing, Proceedings (2019). https://doi.org/10.18653/v1/w19-3110

2. Jabbar, A., Iqbal, S., Akhunzada, A., Abbas, Q.: An improved Urdu stemming algorithm for
text mining based on multi-step hybrid approach. J. Exp. Theor. Artif. Intell. 30(5), 1–21
(2018). https://doi.org/10.1080/0952813X.2018.1467495

3. Szabó, G., Kovács, L.: Benchmarking morphological analyzers for the Hungarian language.
Annales Mathematicae et Informaticae 49 (2018). https://doi.org/10.33039/ami.2018.05.001

4. Jurafsky, D.S., Martin, J.H., Kehler, A., Linden, K.V., Ward, N.: Speech and Langauge
Processing, P. 950. Prentice Hall, Englewood Cliffs (2000)

5. Mohri, M.A.: Finite-state transducers in language and speech processing. Comput. Linguist.
23, 269–311 (1997)

6. Alfred, V.A., Monika, S.L., Ravi, S., Djeffri, D.U.: Kompilyatory: prinsipy, texnologii i
instrumentariy. OOO “I.D. Vilyamc”, Per. sangl

7. Toldova, S.Yu.: Bonch-Osmolovskaya A.A. Avtomaticheskiy morfologicheskiy analiz. Fond
znaniy ”Lomonosov” (2011). www.lomonosov-fund.ru/enc/ru/encyclopedia:0127430

8. Sadykov, T., Kochkonbaeva, B.: Ob optimizatsii algoritma morfologicheskogo analiza. In:
Shestaya Mejdunarodnaya konferensiya po kompyuternoy obrabotke tyurkskix yazykov.
Turklang 2018. Trudy konferensii, Tashkent (2018)

9. Rodolfe, D.: Computational Linguistic Text Processing: Lexicon, Grammar, Parsing and
Anaphora Resolution, p. 4–5. Nova Science Publishers, Inc., NewYork (2008)

10. Yermakov, A.: Morfologicheskiy analizator - osnova poiskovyx sistem. https://www.kv.by/
archive/index2004154301.htm

11. Nojov, I.M.: Morfologicheskaya i sintaksicheskaya obrabotka teksta (modeli i programmy):
dissertatsiya kand, p. 190. Moskva, nauk (2003)

12. Dybo, A.V., Sheymovich, A.V.: Avtomaticheskiy morfologicheskiy analiz dlya korpusov
xakasskogo i drevnetyurkskogo yazykov. In: Nauchnoe obozrenie sayano-altaya retsenzirue-
myy nauchnyy jurnal Nomer 2(08), 9–31 (2014)

13. Suleymanov, D.S., Gatiatullin, A.R.: Model tatarskoy affiksalnoy morfemy i yee realizatsiya,
pp. 113–127. Intellekt. Yazyk. Kompyuter. – Vyp.4, Kazan, Seriya (1996)

14. Suleymanov, D.Sh., Gilmullin, R.A., Gataullin, R.R.:Morfologicheskiy analizator tatarskogo
yazyka na osnove dvuxurovnevoy modeli morfologii. In: Pyataya Mejdunarodnaya kon-
ferensiya po kompyuternoy obrabotke tyurkskix yazykov TurkLang 2017, p. 327. Trudy
konferensii. V 2-x tomax. T 2. Izdatelstvo Akademii nauk Respubliki Tatarstan, Kazan (2017)

15. Jeltov, P.V.: Razrabotka morfologicheskogo analizatora chuvashskogo yazyka. In: Pyataya
Mejdunarodnaya konferensiya po kompyuternoy obrabotke tyurkskix yazykov TurkLang
2017. Trudy konferensii. V 2-x tomax. T 2, p. 327. Izdatelstvo Akademii nauk Respubliki
Tatarstan, Kazan (2017)

16. Israilova,N.A., Bakasova, P.S.:Morfologicheskiy analizator kyrgyzskogo yazyka. In: Pyataya
Mejdunarodnaya konferensiya po kompyuternoy obrabotke tyurkskix yazykov “TurkLang
2017”. Trudy konferensii. V 2-x tomax. T 2, p. 327. Izdatelstvo Akademii nauk Respubliki
Tatarstan, Kazan (2017)

17. Leontev, N.A.: Morfologicheskiy analizator yakutskogo yazyka. In: Shestaya Mejdunarod-
naya konferensiya po kompyuternoy obrabotke tyurkskix yazykov “TurkLang-2018”, vol.
320, pp. 276–279. (Trudy konferensii), Tashkent (2018)

https://doi.org/10.18653/v1/w19-3110
https://doi.org/10.1080/0952813X.2018.1467495
https://doi.org/10.33039/ami.2018.05.001
http://www.lomonosov-fund.ru/enc/ru/encyclopedia:0127430
https://www.kv.by/archive/index2004154301.htm

38 E. B. Boltayevich et al.

18. Kukanova, V.V., Kadjiev, A.Y.: Algoritm raboty morfologicheskogo parsera kalmyskogo
yazyka. In: V sbornike: Pismenoto nasledstvo i informatsionnite texnologii. El’Manuscript-
2014 Materiali ot V mejdunarodna nauchnoy konferensii, pp. 116–119 (2014)

19. Orxun, M.: Computational analysis of uzbek nouns. In: Shestaya Mejdunarodnaya kon-
ferensiya po kompyuternoy obrabotke tyurkskix yazykov “TurkLang-2018”, p. 320. Trudy
konferensii, Tashkent (2018)

	 Contents
	Methods for Creating a Morphological Analyzer
	1 Introduction
	2 Materials and Methods
	3 Morphological Units
	3.1 Lemmatization
	3.2 Morphological Analyzer
	3.3 Morphological Generator

	4 Conclusion
	References

