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Abstract. As is well known, foliations of constant curvature and 
foliations generated by the orbits of Killing vector fields are important 
classes of foliations from a geometric point of view. The paper studies the 
geometry of some foliations of the Minkowski  space, which arise in a 
natural way. It is shown that these foliations are foliations of constant 
curvature. The paper also studies the geometry of some singular foliations 
generated by the orbits of Killing vector fields. 

1 Introduction 

The Minkowski space can serve as a model of the space-time of the special theory of 

relativity. The Minkowski space is the basic space model of quantum physics that plays an 

important role in general relativity. In recent years, with the development of the theory of 

relativity, physicians and geometers extended the topics in classical ifferential geometry of 

Riemannian manifolds to that of Lorentzian manifolds. It is clearly demonstrated by the 

fact that many works in Euclidean space have found their counterparts in Minkowski space 

[1-6]. A. Ya. Narmanov and Zh. Aslonov obtained a complete classification of the singular 

Riemannian foliations of three-dimensional Euclidean space generated by the orbits of 

Killing vector fields[9]. The reachability set geometries of the Killing family of vector 
fields were studied by S.S.Saitova [10]. Minkowski space and its sub-space geometries are 

well studied. Its differential geometry [1-4,13-15] is given in these works 

1 Basic concepts of pseudo-Euclidean spaces and foliation theory. 

Let 
3V  denote the real vector space with its usual vector structure. Denote by 

1 2 3{ , , }B e e e  

the canonical basis of 
3R , that is  

1 2 3(1,0,0), (0,1,0), (0,0,1).e e e    

We denote  ,  ,  x y z  the coordinates of a vector with respect to B . We also consider 

in 
3R  its affine structure, and we will say “horizontal” or “vertical” in its usual sense. 

We say the scalar product 
3( , , )V    of the vectors 

1 1 1{ , , }X x y z  and 
2 2 2{ , , }Y x y z  the number 

defined by the following rule: 
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1 2 1 2 1 2,X Y x x y y z z              (1) 

 
and the exterior product by 

 

1 1 1 1 1 1

1 1 1

2 2 2 2 2 2

[ , ]
y z z x x y

X Y e e e
y z z x x y

                (2) 

 

Definition 1. Vector space 
3V , in which the scalar product of vectors is defined by formula 

(1), is said to be the Minkowski space 1

3R [3]. 

We also use the terminology Minkowski space and Minkowski metric to refer the space and 

the metric, respectively. The Minkowski metric is a non-degenerate metric of index 1.  

Definition 2. A vector 
1

3v R  is said  

(1) spacelike if , 0v v    or 0v  , 

(2) timelike if , 0v v    and 

(3) lightlike if , 0v v    and 0v  .[14] 

The norm of a vector | |x  is defined as the square root of the scalar square of the vector, 

and the distance between two points is defined as the norm of the vector connecting these 

points. 

In Minkowski space 1

3R , two surfaces play the same role as spheres in 
3R : the 

pseudohyperbolic surface and the pseudosphere. The pseudohyperbolic surface of radius 

0r  is the quadric  

  1 2

3{ ; ,   .}H r p R p p r       

This surface is spacelike.  From the Euclidean viewpoint,  H r  is the hyperboloid of two 

sheets 
2 2 2 2

1 2 3x x x r     which is obtained by rotating the hyperbola 
2 2 2

1 3x x r    in 

the plane 2 0x   with respect to the 3x  axis. The second surface is the pseudosphere or 

Lorentz sphere   :S r  

  1 2

3 ;  ,  { }.r pS R p p r      

This surface is time-like and obtained by rotating the hyperbola 
2 2 2

1 3x x r   in the plane 2 0x   with respect to the 3x  axis. 

The lightlike cone of center 0p  is 

  1

3 0 0 0 ;  ,  { }\{ .}0r p R p p p pC p        

Let M  be a nondegenerate connected surface in 
1

3R . The Gauss curvature of M is 

defined of a local parametrization ( , )X u v , K  is given by 

2

2

NL M
K

EG F





. 
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Where ,  ,  E F G  and , ,N M L are the coefficients of the first and second fundamental 

forms. 

Recall that 
2 0EG F   if M is spacelike and 

2 0EG F  if M is timelike. 

We present the definition of a foliation given in [8]. 

Let M  be a smooth connected manifold of dimension n . Smoothness in this paper means 

the class C
 -smoothness. 

Let us recall the definition of a foliation.  

Definition 3. A foliation { ; }F L B    on M of dimension k (codimension

( )n k ) is a partition of M  into arcwise connected subsets L  with the following 

properties:  

1. M L ,  

2. for all  , B    if    , then L L    

3. For every point p M  there is an open neighborhood U  of p and a chart 

1 2 1 2 ( )( , , , , , , , )k n kx x x x y y y   such that for each leaf L  the connected 

components of L U   are defined by the equations 1y const , 2y const ,   , 

n ky const  . Such a chart is a distinguished chart.  

The connected components of the sets 1 2, , , n ky const y const y const    in 

a distinguished chart are called plaques (plates) of F. Fixing 

1 2, , , n ky const y const y const   , the map ( , ))x x y  is a smooth 

embedding, therefore the plaques are connected k  dimensional submanifolds of M . 

This shows that each leaf L  is a union of plaques and there exists a differential structure 

  on L  such that ( , )L   is a k  dimensional connected manifold. Note that the 

canonical injection  : ( , )i L M     is an immersion, but it is not necessarily an 

embedding [16]. 

Example 1. The simplest example of 2 - dimensional foliation is the representation of 

the Minkowski space 
1

3R  as unions of 2 - dimensional parallel planes along the 1x  axis.. 

Definition 4. A partition F  of a manifold M  into leaves is called a smooth (from the 

class 
rC ) singular foliation (that is, a foliation with singularities) if the following 

conditions are satisfied: 

1. for each point x M  there is a 
rC  map  ,U   containing point x  such that 

1 2( )U V V    where 1V  is the origin neighborhood in 
kR , 2V   is the origin 

neighborhood in 
n kR 

, k   is the dimension of the layer passing through the point x  ; 

2. ( ) (0,0);x   

3. for each layer L  such that L U   , equality 
1

1( )L U V l      holds, 

where 
1

2{ : (0, ) }.l v V v L     

If the dimensions of the leaves of a foliation with singularities are the same, then it is a 

regular foliation in the sense of the definition given in []. 
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Let -X  a vector field on M , Mx ,  xX t  be an integral curve of the vector field X  

passing through the point x  at 0t . The mapping  xXt t  is defined in some region 

 xI , which generally depends not only on the field X , but also on the starting point x . 

In what follows, everywhere in formulas of the form  xX t  we will assume that  xIt  . 

If for all points Mx  the domain  xI  of the curve  xXt t  coincides with the real 

axis, then the vector field X  is called a complete vector field. 

Definition 5. The vector field X  on M  is called a Killing vector field if the one-

parameter group of local transformations  xXt t  generated by the field X  consists of 

motions (isometries) of the manifold M . 

Definition 6. The orbit  xL of the family D  of vector fields passing through the 

point x  is defined (see [10]) as the set of such points y  out of M  for which there are 

real numbers kttt ...,,, 21  and vector fields 
1 2
, , ,

ki i iX X X   out of D   (where k  

is an arbitrary natural number) such that 

   1 1

1 1
( ) .k k

k k

t t t

i i iy X X X x


  

2 Main results 

Surfaces of constant curvature in Minkowski space We consider the spacelike ( 3 0x  ) 

subspace of Minkowski as a manifold M. 

Theorem 1. A two-dimensional foliation is a representation of a spacelike (timelike) 

space in the form of concentric pseudosphere (pseudohyperbolic) surfaces. 
Proof.  

Let's look at 3 0x  as  manifolds M . 

We will consider the { ; }F L B    family, its element 

 ( ) : 0H O r Con tL s   .  

The pseudosphere at the beginning of the ( )H O center coordinate.  L  satisfies all the 

conditions of definition 2. This will be { ; }F L B    a two-dimensional foliation. 

The same is true for timelike space. The proof of Theorem 1 is complete. 

Let   =  ,D X Y  be a family of smooth vector fields in 
1

3R , where  

2 1 3 2{ ; ;0}, {0, , }X x x Y x x   . 

The vector field 2 1{ ; ;0}X x x   generates the following one-parameter 

transformation group  

1 2 3 1 2 1 2 3: ( , , ) { cos sin ; sin cos ; }, .tX x x x x t x t x t x t x t R     

The flow of the vector field 3 2{0, , }Y x x  consists of the following transformations 
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1 2 3 1 2 3 2 3: ( , , ) { ; cosh sinh ; sinh cosh } .sY x x x x x s x s x s x s s R     

We have the following theorem, which explains the geometry of this foliation. 

Theorem 2. The orbits of the family of vector fields   =  ,D X Y  generate a singular 

foliation whose singular leaf  is a point, and whose regular leaves are a cone ( )C O   with a 

vertex punctured at the origin, Lorentz sphere  S r and pseudohyperbolic surface  H r . 

Proof. The origin of coordinates is a fixed point of the flows of both vector fields.  

Thus, one of the orbits is the origin, i.e.   1 0;0;0L  . 

Function 
2 2 2

1 2 3 1 2 3( , , )F x x x x x x     is an invariant function for groups of 

transformations generated by vector fields and ,  X Y  since ( ) 0,  ( ) 0X F Y F  .  

Therefore, the level surfaces of this function are invariant sets for transformations generated 

by the vector fields ,  X Y . 

The level surface 

  2 1

2 2 2

1 2 32 33; ; : 0, 0 ,x xL x xx x x      

is the upper part of the cone with the apex punched out. 

We take two arbitrary points from the set 2L


, i.e. 

1 1,1 2,1 3,1 2 1,2 2,2 3,2 2( ; ; ), ( ; ; ) .A x x x A x x x L  Let us show that there are parameters t, s such 

that the following equality  

1 2( ( ))s tY X A A  

holds. 

We rewrite this relation in the coordinate form: 

1,1 2,1 1,2

1,1 2,1 3,1 2,2

1,1 2,1 3,1 3,2

cos sin

( sin cos )cosh sinh

( sin cos )sinh cosh

x t x t x

x t x t s x s x

x t x t s x s x

  


  


  

 

From here we find  

1,2 1,1

2 2 2 2

1,2 2,2 1,2 2,2

2,2 3,2 3,1 1,1 2,1

2,2 3,2 3,1 1,1 2,1

arccos arccos 2 ,

( )( ( sin cos ))
ln

( )( ( sin cos ))

x x
t k k N

x x x x

x x x x t x t
s

x x x x t x t


   
      
       

  


  

. 

Hence, there are values of the parameters , ,t s  i.e. from any point 

1 1,1 2,1 3,1 2( ; ; )A x x x L with the help of flows of vector fields 

2 1 3 2{ ; ;0}, {0, , }X x x Y x x    it is possible to move to any other point 

2 1,2 2,2 3,2 2( ; ; )A x x x L , therefore the set 2L


 is an orbit of the family of vector fields D. 
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It is proved similarly that the set   2 1

2 2 2

1 2 32 33; ; : 0, 0 ,x xL x xx x x     is 

also an orbit of the family of vector fields D . 

Now consider the level surface  

  2 2 2

11 3 32 23 ; ; : , 0 ,x xL x xx x c c     

 of the invariant function 
2 2 2

1 2 3 1 2 3( , , )F x x x x x x   . 

Let us show that from the point 1 1,1 2,1( ; ;0)A x x  of the surface 3L  one can get to any 

point 2 1,2 2,2 3,2( ; ; )A x x x  of the surface 3L . 

If the point 1 1,1 2,1( ; ;0)A x x  moves along the integral curve of the vector field 

3 2{0, , }Y x x , then in time s it arrives at the point with coordinates 

1 2 3( ( ); ( ); ( ))x s x s x s , where  

1 1,1

2 2,1

3 2,1

( )

( ) cosh

( ) sinh

x s x

x s x s

x s x s

 







. 

Now let's show that there is a value of s for which 3 3,2( )x s x . 

The last equality is equivalent to 2.1 3,2sinhx s x ,stems from: 

3,2

2,1

arcsin .
x

s h
x

 
   

 
 

There is a value of s for which 3 3,2( )x s x . 

The point with coordinates 1,1 2 3,2( ; ( ); }x x s x  along the integral curve of the vector 

field 2 1{ ; ;0}X x x   can be transferred to the point with coordinates 

2 1,2 2,2 3,2( ; ; )A x x x . 

Thus the level surface 3L , is an orbit of the family of vector fields D  . This surface is 

Lorentz sphere  S r . 

We will show that the upper part of the  

  4 1 2

2 2 2

3 1 2 3 3; ; : , ,xL x x x x x c x c      

pseudohyperbolic surface  H r  is an orbit. Let 1 3,1(0;0; )A x  be the vertex of the upper 

part of the two-sheeted hyperboloid. Here 3,1x c  . Let us show that from the point 

1 3,1(0;0; )A x  of the surface 4L


 one can get to any other point 2 1,2 2,2 3,2( ; ; )A x x x of the 

surface 4L


. 
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If the point 1 3,1(0;0; )A x  moves along the integral curve of the vector field 

3 2{0, , }Y x x , then in time s it arrives at the point with coordinates 

1 2 3( ( ); ( ); ( ))x s x s x s , where  

1

2 3,1

3 3,1

( ) 0

( ) sinh

( ) cosh

x s

x s x s

x s x s

 







. 

Let us show that there exists a value of s  for which 3 3,1( )x s x . 

The equality 3 3,1( )x s x  is equivalent to the quadratic equation     3,1 3,2coshx s x ,  

3,2

3,1

arccos
x

s h
x

 
   

 
. 

There is a value of s for which 3 3,2( )x s x . 

The point with coordinates 1,1 2 3,2( ; ( ); }x x s x  along the integral curve of the vector 

field 2 1{ ; ;0}X x x   can be transferred to the point with coordinates 

2 1,2 2,2 3,2( ; ; )A x x x . 

It is proved similarly that the lower part of pseudohyperbolic surface  H r  

  4 1

2 2 2

13 32 2 3; ; : , 0 ,x x x c cL x cx x x       

is also an orbit. The proof of Theorem 2 is complete. 
Consider the four-dimensional Minkowski space. The following 10 vector fields will be 

the Killing vector field. 

1 2 1 2 3 2 3 3 1

4 4 2 5 4 3 6 4 1

{ , ,0,0}, {0, , ,0}, { ,0, ,0},

{0, ,0, }, {0,0, , }, { ,0,0, },

, 7,8,9,10i

i

X x x X x x X x x

X x x X x x X x x

X i
x

     

  


 


 

Each vector fields , 1,2,...,10,iX i   respectively generates the following one-

parameter group of transformations. 
Euclidean rotation: 

1 1 2 3 4 1 2 1 2 3 4

2 1 2 3 4 1 2 3 2 3 4

3 1 2 3 4 1 3 2 1 3 4

: ( ; ; ; ) { cos sin ; sin cos ; ; },

: ( ; ; ; ) { ; cos sin ; sin cos ; },

: ( ; ; ; ) { cos sin ; ; sin cos ; }, .

t

t

t

X x x x x x t x t x t x t x x

X x x x x x x t x t x t x t x

X x x x x x t x t x x t x t x t R

  

  

   

 

Pseudo-rotations: 
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4 1 2 3 4 1 2 4 3 2 4

5 1 2 3 4 1 2 3 4 3 4

6 1 2 3 4 1 4 2 3 1 4

: ( , , , ) { ; cosh sinh ; ; sinh cosh },

: ( , , , ) { ; ; cosh sinh ; sinh cosh },

: ( , , , ) { cosh sinh ; ; ; sinh cosh }, .

t

t

t

X x x x x x x t x t x x t x t

X x x x x x x x t x t x t x t

X x x x x x t x t x x x t x t t R

  

  

   

 

Parallel transmission: 

7 1 2 3 4 1 2 3 4 8 1 2 3 4 1 2 3 4

9 1 2 3 4 1 2 3 4 10 1 2 3 4 1 2 3 4

: ( ; ; ; ) { ; ; ; }, : ( ; ; ; ) { ; ; ; },

: ( ; ; ; ) { ; ; ; }, : ( ; ; ; ) { ; ; ; }, .

t t

t t

X x x x x x t x x x X x x x x x x t x x

X x x x x x x x t x X x x x x x x x x t t R

   

    

 

Consider the orbit of a family of vector fields in four-dimensional Minkowski space 
1

4R . 

The orbits of the family of Killing vector fields  11 2 4,= , XD X X  generate a singular 

foliation whose singular leaf  is a point, and whose regular leaves are a cone 
1

4( ) { }\: , 0 } {C O P OP OPR O      with a vertex punctured at the origin, Lorentz 

sphere   1 2

4: ,  { }P OPS r R rOP    and pseudohyperbolic surface 

  1 2

4:{   },H P OPr R rOP    , here O is the origin of the coordinate system.. Note that 

the following triples of vector fields also generate the considered foliation: 

     

     

2 31 3 4 2 3 4 1 3 5

2 3 5 1 3 6 2 3 6

4

5 6 7

 =  =  , , , , , , , , ,

, , , , , , ,

=

 =  =  ,= .

D D D

D

X X X X X X X X X

X X X X X X X X XD D

 

3 Conclusion 

The paper deals with foliations of constant curvature of the Minkowski space, which are 

analogues of the family of concentric spheres in the Euclidean space. The geometry of the 
singular foliation generated by the orbits of Killing vector fields is also studied. 
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